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It is shown that the dynamics of pattern selection in quasi-one-dimensional extended systems may
be described as a discrete process of alteration of the number of points where an order parameter
of the system vanishes. Close to the alteration moment, the system has a universal spatiotemporal
behavior. The one-dimensional Swift-Hohenberg and Ginzburg-Landau equations are considered as
examples. Both yield a spatiotemporal scaling with the same universal exponent.

PACS number(s): 47.20.Ky, 47.65.+a, 61.30.Gd

The dynamics of pattern selection is an important
problem in a wide variety of different extended systems,
such as convection of both isotropic and anisotropic flu-
ids, Taylor-Couette flow, directional solidification, and
many others [1]. The goal of the present paper is to
show that in the quasi-one-dimensional case, close to cer-
tain singled-out points in the (z-t) plane, the dynamics
becomes independent of the details of the initial condi-
tions, while characteristic spatial and temporal scales of
the problem begin to depend on each other, being con-
nected by a scaling law.

Let us consider, for example, the one-dimensional (1D)
Swift-Hohenberg (SH) equation [2]
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At real u and small real ¢ the SH equation is a univer-
sal equation describing the dynamics of a number of ex-
tended dissipative systems close to a threshold of pattern
formation [3]. The meaning of u and € depends on the
formulation of each concrete problem. For instance, in
the case of Rayleigh-Bénard convection in a horizontal
layer for which the equation was initially introduced in
Ref. [2], € is a rescaled deviation of the Rayleigh number
from the threshold of the convective instability (reduced
control parameter) and u stands for the vertical fluid ve-
locity at the midlane, so that the points z,(t) where u
vanishes (nodes) correspond to the centers of convection
rolls.

At € = const, 0 < € < 1, Eq. (1) has a family of steady
spatially periodic solutions whose principle wave number
k (k = 2w /X, where A stands for the spatial period) sat-
isfies the condition |1 — k|< 4/€/2. The solutions with k
lying outside the segment |1 — k|< 4/€/12 are unstable
with respect to infinitesimal perturbations: If such an un-
stable solution is taken as the initial condition, Eckhaus
instability (EI) occurs [4]. The EI development finally
transforms the initial unstable solution into a stable one

u—u’. (1)
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that belongs to the same family, but has another value
of k [5].

It is evident that any wave number alteration process
can be the case only if the dynamics results in a change
of the total number of the nodes. The latter takes place
during a passage of a local extremum of u via the z axis;
see Fig. 1(a). Such a scenario corresponds to the well-
known process of creation or annihilation of a pair of
convection rolls (0++2) without reconnection of stream
lines [6]. However, in degenerate cases positions of some
nodes may be fixed due to the symmetry. If such a fixed
node is engaged in the process, the dynamics is different.

(a)

FIG. 1. Dynamics of creation (annihilation) of a pair of
rolls within the framework of the SH equation (qualitatively).
t1,c/a,2 stand for different moments of time: t1 < t./, < 2,
creation; t1 > t./q > t2, annihilation. (a) Passage of a local
extremum via z axis. (b) Degenerate case. Two nodes at
T = ZTn,nt2 detach from (merge with) one at z = x./,, whose
position is fixed by the symmetry.
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In this case one roll splits into three (creation) or three
rolls merge into one (annihilation), with a reconnection
of stream lines via a stagnation point (1+»3); see Fig.
1(b) [7].

Let us study the dynamics of the order parame-
ter evolution close to a creation or annihilation point
(Zc/arte/a). Being a regular function of z and t, the order
parameter may be expended in powers of Az =z —z./,,
At =t —t./,. The expansion reads as follows:

u = ug1 At + %uzo(Az')z + h.o.t. for 0 & 2,
(2)

1
u = u AtAz + §u30(Am)3 + h.o.t. for 1 « 3,

where h.o.t. denotes higher-order terms. Equations (2)
both yield the same scaling:

Azps = ValAt + O(At), (3)

at small | Azps | and | At|. Here Azpg is the distance
between splitting (merging) nodes [the meaning of the
index PS will be clear later; cf. below Eq. (6)]. The
prefactor a is determined from the interplay of coeffi-
cients in Eqgs. (2) and may be both positive (creation)
and negative (annihilation).

Relation (3) is the desirable scaling law. Note that
the critical exponent in Eq. (3) is 1/2 in spite of the
fourth-order differential operator in the SH equation.

On the other hand, at small ¢ Eq. (1) may be reduced
to the Ginzburg-Landau (GL) equation

Yr = Pxx + (1= | ¥ |*)¥, (4)

where u = (e® + c.c.)y/€/3 and X, and T stand for
“slow” variables X = ze'/2/2, and T' = et [3]. Within
the framework of the GL equation the creation or anni-
hilation process occurs when |1 | vanishes at a certain
point X = Xps, T = Tps and its phase ¢ = argy has
a discontinuity (see, e.g., Refs. [8,9]). This phenomenon,
known as the phase slip (PS) process, also plays a very
important role in the so-called resistive state of super-
conductors [10]. In what follows we discuss the dynamics
of the PS process from a viewpoint that makes its nature
extremely clear.

Let us consider the U-V plane, where U = Ret) and
V = Im, and the same phase trajectory of the system
as a function of X at two different fixed moments of time
— just before the PS and just after it; see Fig. 2. Depar-
tures of X and T from the PS point AX = X — Xpg and
AT =T — Tps are supposed to be small. By definition,
at the PS point U(Xps,Tps) = V(Xps,Tps) =0, i.e.,at
AT = 0, the phase trajectory passes via the origin of the
coordinate frame in the U-V plane. Note, however, that
in spite of the similarity in shape, the curves depicted in
Fig. 2 have a drastic difference in their properties: At
any fixed negative AT phase, ¢ is a monotonic function
of AX. A variation of AX from a small negative value
to a small positive one gives rise to an increase in ¢ of
a quantity close to @ (Ap; =~ 7). On the other hand,
at any fixed positive AT the trajectory has two tangents

passing through the origin of the coordinate frame. It
results in a nonmonotonic behavior of ¢ as a function of
AX: It reaches extrema each time the radius vector coin-
cides with the tangents. Besides, now a variation of AX
from AX; <O (the first point of tangency — lower half
plane in Fig. 2) to AX, >0 (the second one — upper half
plane) decreases ¢ by nearly m (Agpz = —m). The closer
the trajectory to the origin of the coordinate frame, the
closer | Ap; 2| to m and AX; 3 to zero. Thus, the passage
of the trajectory via the origin of the coordinate frame
in the U-V plane generates the phase shift of —27 [11].

Supposing U and V to be regular functions of X and T'
at the PS point, expanding them in powers of AX, AT,
and taking into account that the expansion must satisfy
Eq. (4), it is easy to find that at fixed AT the extrema
of ¢ are located at AX; 2 = £vV2AT + O(AT) and the
phase difference caused by a variation of AX from AX,
to AX, is

| Aps |= 7 + O(VAT). (5)

It is worth mentioning that | Ap2| is always close to, but
smaller than, 7 (see Fig. 2); thus O(VAT) designates a
negative correction to Eq. (5). It is natural to define the
distance between two extrema of ¢, i.e.,

AXps = 2V2AT + O(AT) y (6)

as the width of the PS core — a region of sharp phase
variation.

Earlier we (M.I.T., S.K., and H.Y.) obtained for the
PS process in the GL equation AXpg ~ 4/|AT| [8]. Now

one can see that the prefactor 24/2 also is a universal con-
stants of the problem. The universality of the prefactor in
Eq. (6) makes the PS process in the GL equation strictly
anisotropic in time: At fixed AT close to a PS point, the
dependence p(AX) is always monotonic at AT < 0 and
has two extrema at AT > 0 that coincide with results of
a numerical simulation of the process [8,9].

In other words, the PS process in the GL equation
is strictly connected with the sign of curvature of the
phase trajectory close to the origin of the U-V plane: It

|%

AX = AX,

FIG. 2. Same phase trajectory (bold lines) in the U-V
plane close to the PS point at two different fixed moments
of time (schematically); ATy < 0 and ATz > 0. Arrows on
the trajectory designate the direction of increase of AX.
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is in the future if the center of the curvature associated
with the normal, passing via the origin of the U-V plane,
and the origin itself both are located on the same side
with respect to the phase trajectory, and in past if the
trajectory passes between them; see Fig. 2.

Note that the SH and the GL equations both have the
same scaling index 1/2 [cf. Egs. (3) and (6)] despite
different orders of these equations. Taking into account
that X, T are slow variables, we can conclude that the
same act of creation or annihilation is characterized by
two scaling laws related to Eqgs. (3) and (6), respectively.
Namely, Eq. (3) describes a fast relaxation of perturba-
tions induced by the creation or annihilation of a pair of
rolls. Only a few rolls are engaged into the process and
the scaling is valid until Azpg is small compared to the
characteristic diameter of rolls far from the creation or
annihilation point (local, or microscopic, scale). Mean-
while Eq. (6) is associated with a slow relaxation of the
GL phase. The characteristic spatial scale now is of or-
der ¢~ 1/2 and a large number of rolls are involved into
the process (global, or macroscopic, scale). To get this
global scaling one must obtain the GL phase ¢ treat-
ing the solution of the SH equation. There are several
possibilities for the treatment, say, employing a Fourier

225 um
FIG. 3. Spatiotemporal change of an image of 1D patterns
during EI development (EHC in nematics — experiment).

The interval between each of the two white lines corresponds
to the local value of the roll diameter. The origins in time
and space axes are arbitrary. Arrows indicate z./, for the
most clearly expressed annihilation processes of each type: (a)
transition 2—0, € = 0.1; (b) transition 3—1, ¢ = 0.3.
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transform [9,12]. The procedure is well known and will
not be discussed here.

A numerical simulation of EI in the SH equation agrees
with Egs. (3) and (6) including the value of the prefactor
in Eq. (6) [13]. The same result is found for the simula-
tion of the PS dynamics in the GL equation reported in
Refs. [8,9].

“To obtain experimental evidence of the scalings,
electrohydrodynamic convection (EHC) in the ne-
matic liquid crystal N-(4'-methoxybenzylidene)-4-(n-
butyl)aniline was employed. EI in EHC was realized by
the frequency-voltage jump method whose details were
already described in Refs. [9,14]. In our case the criti-
cal and the operating frequencies were 1200 Hz and 100
Hz, respectively. The sample used had the aspect ratios
(the lateral dimensions to the thickness of fluid layer)
'y = 200 and I'y = 2, which made the system 1D. The
unstable 1D patterns, created as the initial conditions
in the experiments, consisted of about 100 pairs of rolls
aligned in the z direction so that their axes were perpen-
dicular to the long sidewall of the sample. The unstable
patterns always had a spatial period smaller than that
for the stable patterns. Thus EI development could re-
sult in annihilation processes only. The temporal evolu-
tion of an optical image of the patterns was analyzed by
an image grabber (Nexus Qube) electronic system and
a personal computer (NEC Model PC-9801VM). Typi-
cal results of this analysis are shown in Fig. 3, where
e = (V2-V2)/V2. Both annihilation processes—normal
(2 — 0) and degenerate (3 — 1)—were observed clearly.
It is worth mentioning that the degenerate case occurred
at rather large values of € (¢ =0.3 and 0.5), while the
normal process was commonly observed at ¢ = 0.1. The
distance Azpg between the centers of annihilating rolls
(the microscopic scale) was obtained from the images.
The dynamics for macroscopic aspects [AX (T)ps] was
studied by analyzing the spectrum of the fast Fourier
transform in the same manner as that in Refs. [9,12]. At
negative AT (just before the PS) the quantity A Xpg was
determined as the length of the smallest segment with the
phase difference of m between its edges. The results are
shown in Fig. 4. The experimental data fit straight lines
at (A:l:ps/)xo)z < 0.2 [Flg 4(a)] and (AXps/Ao)z < 6
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FIG. 4. Treatment of the results shown in Fig. 3. Ao (ini-
tial wavelength) is 53 ym at € = 0.1 and 43 um at € = 0.3. (a)
Microscopic scaling relation (Azps-At). e, €=0.1; X, 0.3. (b)
Macroscopic scaling relation (AXps — AT). o, ¢ = 0.1 and
AT <0; o, e=0.1and AT >0;0, e =0.3 and AT <0; m,
e = 0.3, and AT > 0.
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[Fig. 4(b)]. The slope of the lines in Fig. 4(a) depends
on the value of €. Besides, even at the same ¢ it is different
at different realizations of the annihilation process, which
agrees with the above mentioned nonuniversality of the
prefactor a in Eq. (3). In Fig. 4(b) the slope is univer-
sal within the accuracy of our experiment [cf. Eq. (6)].
Thus both microscopic [Eq. (3)] and macroscopic [Eq.
(6)] scalings were well proved experimentally.

Summarizing the results of our analysis we would like
to emphasize the following.

(1) Scaling Az ~| At |'/2 is a generic property of a
variety of different problems that does not depend on the
order of differential operator in the corresponding gov-
erning equation [cf. Eq. (3) to the SH equation and Eq.
(6) to the GL equation)].

(ii) The only ground for this universality is connected
with an opportunity to find (a) a discrete quantity as-
sociated with a continuous order parameter [such as the
total number of nodes for u(z,t)] and (b) a relevant rep-
resentation of the order parameter, so that it remains a
regular function of z and ¢ at the bifurcation moment

when the discrete quantity alters.

(iii) The value of the critical exponent (1/2) has no
relation to phase diffusion, or to any other diffusionlike
processes, being completely determined by local charac-
teristics of the order parameter close to the bifurcation
point.

(iv) If the system has several different spatiotempo-
ral scales (such as the SH equation), each one can bring
about its own scaling.
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FIG. 3. Spatiotemporal change of an image of 1D patterns
during EI development (EHC in nematics — experiment).

The interval between each of the two white lines corresponds
to the local value of the roll diameter. The origins in time
and space axes are arbitrary. Arrows indicate z./, for the
most clearly expressed annihilation processes of each type: (a)
transition 2—0, € = 0.1; (b) transition 3—1, € = 0.3.



